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Motivated by the fact that a population of competing agents never set up a true stationary distribution, we
propose a theory of evolution kinetics for complex adaptive systems. The formula derived for the survival
probability is used to describe different phases in the population evolution when the prize-to-fine ratio as well
as time changes. A kinetic phase diagram is obtained to show the phase boundaries for the self-segregating
region, the intermediate region, and the clustering region. The kinetic evolutionary equations of strategy
distribution are also established and used to give the root-mean-square separation of strategy distribution. It is
revealed that the rootstock of the phase transitions is ascribed to the cooperation and competition among agents
with different gene values for a limited resource.
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A common problem which is of central importance in
social, economic, and biological sciencesf1–5g is the evolv-
ing population in which individual memberssagentsd adapt
their behavior according to past experience. The most inter-
esting situation is that agents compete for a limited resource
or to be in the minority. Considerable progress in the theo-
retical understanding of such systems has been made by
studying a simple, yet realistic model of the minority game
sMGd and its evolutionary versionsEMGd f6–18g. The basic
model of the EMG consists ofN soddd agents, each having
some finite number of strategies. At each time step, each
member has to choose one of the two kinds of actions, such
as buying and selling the asset in a financial market. The
payoff of the game is that after all agents have taken action
independently, those who are in the minority group win and
acquire a point. The agents make their decisions based on the
common knowledge of the past record. The most interesting
result f6,10g of the model is that some kind of cooperation
and self-organization appears among the agents. It is possible
that the agents can improve their performances by modifying
their strategies through a genetic-algorithm-based crossover
mechanismf12g. Another approach for the EMG is that each
agent is assigned a single number or “genetic value”g f13g.
Following a givenm-bit record,g is the probability that the
agent will choose the same outcome as that stored in the
common knowledge, i.e., he will follow the current predic-
tion, while 1−g is the probability he will choose the oppo-
site. The most remarkable conclusion deduced from this kind
of EMG is that the population of competing agents tends to
self-segregate into the opposing groups characterized by ex-
treme behavior when the prize-to-fine ratioR equals unity,
and in order to flourish in such situation an agent would
behave in an extreme way with the gene valueg=0 or 1. In
order to explain this result, two analytic theoriesf14,15g,
both based on the stationary assumption, have been pro-
posed. To consider the more realistic life situations, an ex-
tended EMG model has been explored, in which the prize-

to-fine ratioR takes a variety of different valuesf16g. It has
been shown that sharp phase transitions exist in this model:
“confusion” and “indecisiveness” take over in the time of
depression with the prize-to-fine ratioR smaller than a criti-
cal valueRc. In this case, the cautious agentsscharacterized
by g=1/2d perform better than the extreme ones. That is, for
R,Rc, agents tend to cluster aroundg=1/2 rather than self-
segregate into two opposing groups.

In fact, a population of competing agents never estab-
lishes a true stationary distribution. The winning probability
of an agent isoscillatorily time-dependentf17g. In order to
explain the global behavior of agents in the extended EMG,
a random-walksRWd model with atime-dependentjumping
probability, corresponding to the winning probability, has
been proposedf18g. In this model, a walker randomly walks
on a one-dimensional lattice with discrete timet=0,1,2,… .
The probabilitytstd to step to the right is given bytstd= 1

2
−«−s−1dtA. The biased value« is often positive and!1/2.
For definiteness,A is taken as positive and represents the
amplitude of temporal oscillations. To let the probability be
meaningful, it is required thatA,

1
2 −«. It is noted that this

theory is based on the stationary assumption by adopting
«sgd=s«0/ÎNdgs1−gd f14g. Therefore, phase transitions are
dependent on the bias and will disappear ifN→`. More-
over, there is no time-dependent phase transition for any
given prize-to-fine ratioR. These seem not to be found in
real circumstances and are also in contradiction to numerical
simulations.

The aim of this paper is to study the evolution kinetics of
a system composed of adaptive competing agents, which
does not depend on any stationary assumption. We start to
investigate the evolution of individual agents by RW in one
dimension. Due to the well-known fact that the winning
probability of an agent may experience periodic oscillations
f16,17g, we can differentiate two time units used for conve-
nience. One is the time step for the agent to make a decision,
and the other is the oscillating half-period for winning or
losing sequentially. Generally the latter, denoted byT/2, in-
cludes more than one time step. In our approach, a time-
dependent jumping probability density is defined as
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wsx,t;x8,t − 1d = F1

2
− s− 1dtAGdsx,x8 + Rld

+ F1

2
+ s− 1dtAGdsx,x8 − ld, s1d

which describes a process in which a walker jumps from site
x8 at time t−1 to sitex at time t. Here the oscillating half-
periodT/2 is taken as the time unit, the parameterR is the
ratio of two distances jumping to the right and to the left
si.e., the prize-to-fine ratio in the EMGd, and l defines the
jumping distance to the left in a half-period. In the reduced
units, l =T/2. Furthermore,psx,td is used to denote the
spatio-temporal probability density for the random walkers at
position x at time t. Its evolution obeys the general master
equation

psx,td =E wsx,t;x8,t − 1dpsx8,t − 1ddx8

= F1

2
− s− 1dtAGpsx − Rl,t − 1d + F1

2
+ s− 1dtAG

3psx + l,t − 1d. s2d

Based on Eq.s2d, some important quantities are derived by
using the characteristic function methodf19g. The first-order
moment and the second-order central moment are given by

s1 ; x0 + kxlt = x0 −
1

2
s1 − Rdlt − Als1 + Rdsin2pt

2
s3d

and

s2 ; ksx − s1d2lt

= S1

4
− A2Ds1 + Rd2l2t − 2s1 − R2dl2A sin2pt

2
, s4d

wherex0 is the initial position of the walker and is assumed
larger than zero in general. According to the central-limit
theorem, for a long enough timet, the probability density
psx,td can be approximated by the Gaussian distribution with
the expectation values1 and the square standard deviation
s2. It tells us, from Eqs.s3d and s4d, that the distribution
center moves with an oscillating drift speed towards the left
and the distribution widens oscillatorily with time.

In the EMG, an agent always tries to locate in the minor-
ity group, so there is a tendency to form a probability flow
from high density to low density. This makes the diffusion
approximation a valid approach for further dealing with our
problem. In this approximationf19g, the evolution ofpsx,td
after a long time can be described by the variable coefficient
diffusion equation

]psx,td
]t

= Dstd
]2psx,td

]x2 − vstd
]psx,td

]x
, s5d

where the diffusion coefficient and the drift velocity are re-
lated to Eqs. s3d and s4d by s2=2e0

t Dstddt and kxlt

=e0
t vstddt, respectively. When timet is long enough, the

asymptotic solution of Eq.s5d, satisfying the initial condition

psx,0d=dsx−x0d and the absorbing boundary condition
ps0,td=0, can be expressed as

psx,t;x0,0d =
1

4Î2ps2
HexpF−

sx − x0 + kxltd2

2s2
G

+ expF−
sx − x0 − kxltd2

2s2
G

− expF−
sx + x0 + kxltd2

2s2
G

− expF−
sx + x0 − kxltd2

2s2
GJ . s6d

From this equation, we can obtain an analytic expression for
the survival probability,

Sstux0d =E
0

`

psx,t;x0,0ddx

=
1

2FerfSx0 + kxlt

Î2s2
D + erfSx0 − kxlt

Î2s2
DG , s7d

where erfsxd is the error function. Equations7d is the central
result of this paper, from which a lot of relevant information
regarding the evolving population of a complex adaptive sys-
tem can be extracted.

From Eq.s7d we can investigate the evolution kinetics of
a competing and adaptive agent system by considering an
agent’s survival probability depending on his gene value and
on time. It is shown that the amplitude of the oscillating
winning probability f17,18g can be expressed byA=asRdug
−1/2u and its periodT also varies with the prize-to-fine ra-
tion R. According to the previous and also our numerical
simulations, we find it is appropriate to adoptasRd=1/f1
+exps1−Rdg, which gives A=0.491 whenR=0.8, and A
=0.25 whenR=1, for g=0 or 1; andTsRd=10f1+exps1
−Rdg2, which corresponds toT<10 time steps whenR=0.8
andT=40 time steps whenR=1.0. Correspondingly, froml
=T/2, the jumping distance of the walker to the left is 5 and
20, respectively. It should be noted that so far the prize-to-
fine ratio dependence of the oscillating amplitude and period
can only be shown by numerical simulations. The two ex-
pressions here forasRd andTsRd are obtained by fitting the
numerical results and they are consistent with Figs. 1, 2, and
4 in f17g qualitatively. In fact, we have also writtenasRd and
TsRd in other functional form, but found there are no obvious
deviations in the phase diagram. Substituting these two ex-
pressions for the amplitude and period into Eqs.s3d, s4d, and
s7d, we can analyze the behavior of agents with different
gene values. For a given initial positionx0, we can plot the
survival probabilitySst ,Rd with respect to gene valueg from
0 to 1 for a different prize-to-fine ratioR at a given timet or
at different timest for a given prize-to-fine ratioR. The
former is the same result obtained by Hod with a different
approachf18g, but the latter is totally new. Generally, we can
find three kinds of distributions, or three phases, shown in
Fig. 1; the parameterx0 is chosen to be 4. Theø-shaped
curve represents the self-segregation, which corresponds to
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the case in which there are lesscautiousagentsscharacter-
ized by g.1/2d than extremeagentsscharacterized byg
.0 or 1d; theù-shaped curve corresponds to the case oppo-
site to the first one; and the M-shaped curve is the interme-
diate phase.

From the analytic results obtained above, the evolutionary
behavior of complex adaptive systems can be interpreted as
follows. On the one hand, for the agents near an extremum
characterized byg.0 or 1, A.AmaxsRd, while for the cau-
tious agents characterized byg.1/2, A.0. Therefore, it
can be seen clearly from Eq.s4d that in the case of any value
of R, the scores of the cautious agents disperse more quickly
than those of the extreme agents. On the other hand, the
distribution center of scores for all agents drifts toward to the
absorbing boundary with the same drift speedvstd=ds1/dt
for R,1 and dangles aboutx0 for R=1. As a result, forR
=1, the survival probability of an extreme agent is always
larger than that of a cautious agent, and the survival prob-
ability distribution of the whole system shows aø shape,
i.e., a self-segregating phase. ForR,1, the scores of agents
decrease oscillatorily. Once their scores fall bellow some
value, they will eventually perish. Thus, at the beginning, the
survival probability of an extreme agent is larger than that of
a cautious agent, and the survival probability distribution of
the whole system shows aø shape, i.e., a self-segregating
phase; in the late period, most of the extreme agents’ scores
have fallen below critical valued, but some of the cautious
agents have not and the survival probability distribution of
the whole system shows aù shape, i.e., a clustering phase.
In the intermediate period, the survival probability distribu-
tion of the whole system shows an M shape, i.e., an interme-
diate phase. In one word, the phase transitions are related to
the presence of a drift speed for the distribution center of the
scores of agents, and also to the difference of oscillating

amplitudes of the winning probabilities of agents with differ-
ent gene values.

Furthermore, we can determine two critical times to char-
acterize the kinetic phase transitions, i.e., from the self-
segregating phasesø phased to the intermediate phasesM
phased and from the intermediate phase to the clustering
phasesù phased. Both critical times can be determined by
letting the first derivative and the second derivative of the
survival probabilityS with respect to the gene valueg be
equal to zero. For theø-M phase transition, the first deriva-
tive is taken atg=0 sor 1d and for the M-ù phase transition,
the second derivative is taken atg=1/2.After a little math-
ematics, the critical times are determined. They read

t1c =
2x0

1 − R
cothF 2x0s1 − Rd

s1 − a2ds1 + Rd2l
G s8d

and

t2c =
2x0

1 − R
cothF2x0s1 − Rd

s1 + Rd2l
G . s9d

It is noted that in deriving these two expressions, the oscil-
lating terms in Eqs.s3d, s4d, ands7d are omitted for simplic-
ity, because they are trivial for the long-time effect. Equa-
tions s8d ands9d can be used to give a kinetic phase diagram
which describes what kind of state the system is in at a given
time for a given prize-to-fine ratio. Plottingt1c and t2c with
respect toR for the given parameterx0, we can find that the
curves t1csRd and t2csRd divide the st ,Rd plane into three
regions as shown in Fig. 2, in which the upper, middle, and
bottom regions correspond to the clustering, intermediate,
and self-segregating phases, respectively. From Eqs.s8d and
s9d and Fig. 2, we can draw some interesting conclusions.sid
To expresst as the functions ofR, there is a free parameterx0
as the initial value for an agent to enter in EMG. Its variation
will not affect the analytic property of the phase boundaries
t1c and t2c, so the phase diagram is stable under the pertur-
bation byx0, although the system itself is nonstationary.sii d
If R→1, t1c andt2c tend to infinity and it is impossible for a
phase transition to appear. That is to say, the population of
competing agents with similar capability and knowledge will
always tend to self-segregate into the opposite groups char-
acterized by the extreme behavior, which is in agreement

FIG. 1. Survival probability vs gene value.sad At a fixed time
for three different prize-to-fine ratios;sbd for a fixed prize-to-fine
ratio at three different times. The graphs are rescaled for conve-
nience and the time step is chosen as the time unit.

FIG. 2. Kinetic phase diagram.
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with the result presented by Johnsonet al. f13g. siii d At any
long enough time, there are generally three phases which
correspond to the regions with different prize-to-fine ratiosR
and are in agreement with the result presented by Hod
f16,18g. sivd For anyR,1, there will always be phase tran-
sitions as time changes from the self-segregating phase to the
intermediate phase and from the intermediate phase to the
clustering phase.

Equations7d is also useful to elucidate the kinetic evolu-
tionary characteristics of the strategy distribution of agents,
Psg,td, which could be expressed as

Psg,td = o
i=0

t

pisg,td. s10d

Here pisg,td is taken as the fraction of agents who have
survived afteri time steps since they enter the game. There-
fore,

p0sg,td =E
0

1

dgo
i=0

t−1

pisg,t − 1dfSsg,id − Ssg,i + 1dg s11d

and

pisg,td = pi−1sg,t − 1df1 − Ssg,t − 1d + Ssg,tdg, i = 1,…,t.

s12d

Figure 3 displays the root-mean-squaresrmsd separation of
strategiesksDgd2l1/2 as the function of prize-to-fine ratioR

obtained by numerically solving Eqs.s10d–s12d, which
agrees qualitatively with the result presented in Fig. 2 in Ref.
f16g by numeral simulations.

In summary, based on the fact that a population of com-
peting agents never establishes a true stationary distribution,
a theory has been proposed to study the evolution kinetics
for complex adaptive systems according to the characteristic
function method and the variable coefficient diffusion equa-
tion. In the presence of an absorbing boundary, an analytic
expression for the survival probability was derived and used
to show the kinetic phase transitions from the self-
segregating phase to the intermediate phase and from the
intermediate phase to the clustering phase when the prize-to-
fine ratio as well as time changes. Two formulas for the
kinetic phase boundaries were obtained and then a kinetic
phase diagram was plotted. In addition, the kinetic evolution
of strategy distribution was also analytically treated and the
results are in agreement with the numerical simulations. It
has been made clear that the rootstock of phase transitions in
complex adaptive systems can be ascribed to the cooperation
and competition among agents with different gene values and
a limited resource characterized by the prize-to-fine ratio.
For any value of the fine-to-prize ratio less than 1, the popu-
lation distribution of the system will always experience three
different phases. At the beginning, the survival probability of
an extreme agent is larger than that of a cautious agent, and
the survival probability distribution of the whole system
shows a ø shape, corresponding to the self-segregating
phase; the extreme agents behave better than the cautious
agents. In the late period, most of the extreme agents’ scores
have fallen below a critical value, while some of the cautious
agents’ scores have begun to rise above this value. Then the
survival probability distribution of the whole system shows a
ù shape, corresponding to the clustering phase; the cautious
agents will behave better than the extreme agents. Between
these two extreme periods, the survival probability distribu-
tion of the whole system shows an M shape related to the
intermediate phase. Our theory definitely confirms the fact
that a population of competing agents never sets up a true
stationary state.
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